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Figure 1: The figure shows the example of a system with two ¢’s and
Lagrangian 2(¢* — §2)2. The momenta are P1 =¢'—4% and py = ¢% — gt
There is one primary constraint ®=p1+p2 =0, All of g-space is mapped
on the straight line py + pp = 0 of p-space. Moreover, all the 7’'s on the
straight line 4% — ¢! = ¢ are mapped on the same point P1 = —Cc= —pg
belonging to the constraint surface ¢ = 0. The transformation gq—pis
thus neither one-to-one nor onto. To render the transformation invertible,
one needs to adjoin extra parameters to the p’s (see below)
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The presence of arbitrary functions v? in the total Hamiltonian tells
us that not all the ¢’s and p’s are observable. In other words, although
the physical state is uniquely defined once a set of ¢’s and p’s is given:

the converse is not true—t.e., there is more than one set of values of
the canonical variables representing a given physical state. To see how
this conclusion comes about, we notice that if we give an initial set of
caponical variables at the time t; and thereby completely define the
physical state at that time, we expect the equations of motion to fully
determine the physical state at other times. Thus, by definition, any
ambiguity in the value of the canonical variables at ¢ # ¢, should be a
physically irrelevant ambiguity.



Ex2

CER——

Want aa L that (s (avavriant
under e st :ammef-m‘es:

A

Marwellian s€& .

k > x' = Rx + £ (€)
(o d o~ PR

con gt a;Qé. function
rotxatiown o+ €

% = Mx 2 -mg Z mA )E":
‘et




EL e1s .

d fm- (% - L = ) -2V
a-t( ©ot ""-h.\-'*m'l .‘) Yi

I+ X‘;('ﬂ (s G Solution, Hen
So S

ey = XTE) + £70F)

W
arb. funchion
o4

?aav\ +Hhe a Faf‘tn‘r indleter minism

Sorrec/ u)o ; gauge treedom.

* Tl\cs &rt m‘l‘a.: roduce.c
an acclont of gauae



prime anc SQcOndar;_
cous'l‘rmn‘l"; ﬁ;eﬂcr dc{-i e o
Sub:pacc '

e c f’(%, p)

o4 the phase space [, catled
the constraint sarfoce.

/st class constraints ave those

Poisson brachet with eve r?_
constraint vanishes wealk «a,

(¢co. on &)
CFGl= 2F2¢ —3F ag¢

—

2" 3& Pe 31



"Oéservo.ble s

e Funcftions F:C > IR

Hat have van(s hm;

PR with all -f-w‘sf'
clasS ecomstraints

s Fanctione on Fte A
reduced fhaxe space r
obtained b ;ao‘f\m“h ;

oat Cby e Jauae
orbi‘i‘;? ;

Based on Ocmc'sfg&zo:al
auoe +r¢M7L0rm¢.+c0nJ‘
are merad'co/ b

Livst ala.rs con ST}a. nts.




e C
two Poiu‘h
oNn anorbit
CovVYeS pond
1o H € same
Phg Sccal state
A

e orb.t correspw\/.r

Eacdh 9a
to a Safn;ae roin‘!' of f

Modulo tech. dc‘ﬂc‘calﬁe.f,
haye normal,ah COnSTrm'ned,\
Hami{tnian mechanics on N

Observables evolve determin-
isfl-ic.!lg X



EXT(aaau‘n)
%; and 1}' M—Q_T observables:
[‘1{) 2 +?,_X Fo# E%‘,P1 +f1:]
But 1‘—1" is an observable.
C?"ﬂ;’) ﬂ“’ﬂ-‘ =0
6}1—6" does evolve
Adeterminivtica I/;

Et 2(Mmaxwallion cage)
S't‘/m‘/GV‘



3@ Hami(donian farmx//km Ffor &R
—~> ‘\‘_ s e tee
% . ap:iic:’i ¢

P ~> 11‘"“’ conjugate momentum
de{»n\eaf in term §
of extrinsie curvature
of 2

Find ftaet GR (s o constre;ned
Hamiltonian sz:ftm

Two fami lies of constraints

cd) - Meoment
fo Chae, T ) =o constraint

"(Q(‘\‘},,W‘J) =0 Homiltonion
constraint

Homilfonian for GR:
H = fcmfo + N*R)
N - “Iapje +un¢+c‘on"
N& - ush;"_t ‘!’“ﬂ#‘oon:”



e How do the consTraints
corves Pond +o the a(c‘.ﬁ-eo
frececlom of SR

On the congTraint surface of
the (hay,T9) phase space,
e canoniceal trans formations

aenew ated 'b?
J‘g.' P‘\ and \rg"zlo
s pond to spacetime
:?;-::o ::rrh:;ms (Unrah 2 wald 1939).

* What fo make of the »ofien
-H\a.{' motion s Pare 94u9¢ 2



) What is an Lbservablein &R 2

aune @ cnvariant

%u‘n"': 1”;

"

“Observable”

Take Hie diff(M) group fo de
?auac for 6 A

1) No local atuan'h"f‘% @(P) fhat
(s @ {-un Fibwn o4 Pac-&f’fm& N
oints pe€ M is an'observable --
not even '_'sca lar cnvarionts " ——

unless @(p) = constT.

2) Globol quont: fres (Fhe
S R f_.—i' d (¢4 I connraes)
M

ave “observables” Bu‘r.‘f‘ke}
avenot use fal -f-ovr Joc'n?_

Fk3$243.



3) Goin Cs‘dlnCC ?uanh‘h‘es

Einstein’s (1916) escape f7 o m

the hole d\rémen""— “Poc'n't
CoOLN edences "

Gemerali e 1his notion lt.rc‘ny_
<deas o Kerete h ma nmn (M‘IE)
ond Komavr (1a50s) .

ITwn a ceneric Sol ation o+ dA e
vacuahm E FE , M,RQL,

e metric wid net Rave ¢n3,
S‘aw\'mefm‘cs.

So can fﬂ'nd secalar fields
34 , Az1,2,3,4
s. €.
Vpqe AN P=g <D 9> = 97(1)

Note : The cPA are not "observables”

Bt +hey cen be _(:;a-'-c, Q‘"
define bservatbles



5.7.
’8,4¢\.= OQ* o0® g™
MG IR o 12

This funo‘h‘ona' 'S an "observable i

How +o0 parse and measare Sueh
tobservables” <



114 THE GENERAL THEORY

knowledge, there is a well-known physical fact which favours
an extension of the theory of relativity. Let K be a Galilean
system of reference, ie. a system relatively to which (at least
in the four-dimensional region under consideration) a mass,
sufficiently distant from other masses, is moving with uniform
motion in a straight line. Tiet K be g second system of
reference which is moving relatively to X in uniformly
accelerated translation. Then, relatively to XK', a mass
sufficiently distant from other masses would have an acceler-
ated motion such that its acceleration and direction of
acceleration are independent of the material composition and
physical state of the mass.

Does this permit an observer at rest relatively to K' to
infer that he is on a really " accelerated systemn of reference ?
The answer is in the negative ; for the above-mentioned
relation of freely movable masses to K’ may be interpreted
equally well in the following way. The system of reference
K’ is unaccelerated, but the space-time territory in question
is under the sway of a gravitational field, which generates the
accelerated motion of the bodies relatively to K’

This view is made possible for us by the teaching of
experience as to the existence of a field of force, namely, the
gravitational field, which possesses the remarkable property
of Imparting the same acceleration to all bodies.* The
mechanical behaviour of bodies relatively to K’ is the same
as presents itself to experience in the case of systems which
We arc wont to regard as ““ stationary ” or as privileged.”
Therefore, from the physical standpoint, the assumption
readily suggests itself that the systems K and K’ may both
with equal right be looked upon as “ stationary,” that is to
say, they have an equal title ac systems of refercuce for the
physical description of phenomena.

It will be seen from these reflexions that in pursuing the
general theory of relativity we shall be led to a theory of
gravitation, since we are able to “produce ”’ a gravitational
ficld merely by changing the system of co-ordinates. Tt will
also be obvious that the principle of the constancy of the
velocity of light n vacuo must be modified, since we easily

* Eotvis has proved experimientally that the gravitational! field bas this
property in great accuracy.
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of Z, permanently coincide. We shall show that for a space-
time measurement in the system K’ the above definition of
the physical meaning of lengths and times cannot be main-
tained. For reasons of symmetry it is clear that a ecircle
around the origin in the X, Y plane of K may at the same
time be regarded as a circle in the X', Y' plane of K. We
suppose that the circumference and diameter of this circle
have been measured with a unit measure infinitely small
compared with the radius, and that we have the quotient of
the two results. If this experiment were performed with a
measuring-rod at rest relatively to the Galilean system K, the
quotient would be w. 'With a measuring-rod at rest relatively
to K', the quotient would be greater than w. This is readily
understood if we envisage the whole process of measuring
trom the ‘‘ stationary " system K, and take into consideration
that the measuring-rod apphed to the periphery undergoes
a Lorentzian contraction, while the one applied along the
radius does not. Hence Euclidean geometry does not apply
to K'. The notion of co-ordinates defined above, which pre-
supposes the validity of Euclidean geometry, therefore breaks
down in relation to the systemn K'. So, too, we are unable
to introduce a time corresponding to physical requirements
in K, indicated by clocks at rest relatively to K. To
convince ourselves of this impossibility, let us imagine two
clocks of identical constitution placed, one at the origin of
co-ordinates, and the other at the circumference of the
circle, and both envisaged from the ¢ stationary” system
K. By a familiar result of the special theory of relativity,
the clock at the circumference—judged from K-—goes more
slowly than the other, because the former is in motion and
the labier at rest.  An observer at the cownou origin of
co-ordinates, capable of observing the clock at the circum-
ference by means of light, would therefore see it lagging be-
hind the clock beside him. As he will not make up his mind
to let the velocity of light along the path in question depend
explicitly on the time, he will interpret his observations as
showing that the clock at the circumference ‘“ really ” goes
wore slowly than the clock at the origin.  So he will be
obliged to define time in such a way that the rate of a clock
depends upon where the clock may be.
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We therefore reach this result :—In the general theory of
relativity, space and time cannot be mmmumm in such a way
that differences of the spatial co-ordinates can be directly
measured by the unit measuring-rod, or differences in the
time co-ordinate by a standard clock. .

The method hitherto employed for laying co-ordinates
into the space-time continuum ina definite manner thus breaks
down, and there seems to be no other way which S.oEm m:oﬂ
us to adapt systems of co-ordinates to the mocn-m:mmummobp_
universe so that we might expect from their application a
particularly simple formulation of the laws of nature. So
there is nothing for it but to regard all HB@m.EpEm systems
of co-ordinates, on principle, as equally suitable for the
description of nature. This comes to requiring that :—

The general laws of nature are to be &%ﬁ‘mm%& by SQESQSV.
which hold good for all systems of co-ordinates, that s, are
co-variant with respect to any substitutions whatever (generally
co-variant). ) . .

It is clear that a physical theory which satisfies this
postulate will also be suitable for the general postulate of
relativity. For the sum of all substitutions in any case 1n-
cludes those which correspond to all relative motions of three-
dimensional systems of co-ordinates. That this requirement
of general co-variance, which takes away from space and
time the last remnant of physical objectivity, is a natural
one, will be seen from the following reflexion. All our
space-time verifications invariably amount to a mmﬁmﬁbwuﬁwo:
of space-time coincidences. If, for example, events consisted
merely in the motion of material points, then ultimately
nothing would be observable but the meetings of two or more
of these points. Moreover, the results of our measurings are
nothing but verifications of such meetings of the Bmemﬁm_
points of our measuring instruments with other Emﬁzi
points, coincidences between the hands of a clock and points
on the clock dial, and observed point-events happening at the
same place at the same time.

The introduction of a system of reference serves no other
purpose than to facilitate the description of the totality of such
coincidences. We allot to the universe four space-time varl-
ables &y, &, Z;, z, in such a way that for every point-event

e e e e et
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there is a corresponding system of values of the variables
z, ...z, To two coincident point-events there corre-
sponds one system of values of the variables @, . . . z,, i.e.
coincidence is characterized by the identity of the co-ordinates.
If, in place of the variables z;, . . . z,, we introduce functions
of them, z',, 'y, 'y, &'y, a8 a new system of co-ordinates, so
that the systems of values are made to correspond to one
another without ambiguity, the equality of all four co-ordin-
ates in the new system will also serve as an expression for
the space-time coincidence of the two point-events. As all
our physical experience can be ultimately reduced to such
coincidences, there is no immediate reason for preferring
certain systems of co-ordinates to others, that is to say, we
arrive at the requirement of general co-variance.

§ 4. The Relation of the Four Co-ordinates to Measure-
ment in Space and Time

It is not my purpose in this discussion to represent the
general theory of relativity as a system that is as simple and
logical as possible, and with the minimum number of axioms;
but my main object is to develop this theory in such a way
that the reader will feel that the path we have entered upon
is psychologically the natural one, and that the underlying
assumptions will seem to have the highest possible degree
of security. With this aim in view let it now be granted
that :—

For infinitely small four-dimensional regions the theory
of relativity in the restricted sense is appropriate, if the co-
ordinates are suitably chosen.

For this purpose we must choose the acceleration of the
nfinitely small (*‘ local ) system of co-ordinates so that no
gravitational field occurs; this 1s possible for an infinitely
small region. Tiet X, X,, X, be the co-ordinates of space,
and X, the appertaining co-ordinate of time measured in the
appropriate umt* If a rigid rod is imagined to be given as
the unit measure, the co-ordinates, with a given orientation
of the system of co-ordinates, have a direct physical eaning

* The unit of time is to be chosen so that the velocity of light in vacuo as
measured in bhe “ local " system of co-ordinates is to bo equal to unity.

E} Y i :? : L.,}vv
i .
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in the sense of the special theory of relativity. By the
special theory of relativity the expression

dst = — dX} - dX! - dX;+dX, . . (D)

then has a value which is independent om. the orientation %m
the local system of co-ordinates, and 18 pmom«npusp_&% r%
measurements of space and time. The magnitude of ¢ w
linear element pertaining to points of the four-dimensiona
continuum in infinite proximity, we call ds. If the ds belong-

ing to the element dX; . .. &N.p .wm.wommsﬂm. we mo:o&m
Minkowski in calling it time-like ; if it is negative, we call 1
space-like.

To the * linear element " in question, or t0 the two Emnﬁw
itely .proximate point-events, there will also A.uoﬁamuwoug
definite differentials dz, . . . dz, of the four-dimensiona
co-ordinates of any chosen system om reference. If this
system, as well as the ““ local " system, 1s given for the Hmmuwc
under consideration, the dX, will allow themselves 8. e
represented here by definite linear homogeneous expressions

f the dzs:— n
° dX, = Sayedrs . . . (2

Inserting these expressions in (1), we obtain

ds? = Zgedaedes,. . - - ()
TT

where the gor will be functions of the . These M@ﬂ :om
longer be dependent on the orientation and d.rm v@ m 0
motion of the “local’” system of co-ordinates, for ds* 1s nm_
quantity ascertainable by rod-clock ~.:cpm5.m5o3. oﬂﬁoﬂ -
events infinitely proximate in mwpno-a:dov and mmwzm,‘ H.c e-
pendently of any particular choice of co-ordinates. The gor
are to be chosen here so that ger = gro; the suwmation Mm
to extend over all values of ¢ and 7, 50 Sam.ﬁ ?m‘mca consists
of 4 % 4 terms, of which twelve are equal in pairs. m

The case of the ordinary theory of meSES\ arlses oEL M
the case here considered, if 1t is wom.m;v_ﬁ by reason of Mrm
pariicular relations of the ger in a finite region, to :rmom.mﬁw M
system of reference m the finite region in such a way tha
the go- assume the constant values




Is GTR special in that it is the first theory
in physics in which diffeo invariance is a
gauge symmetry?

The Klein-Gordon equation for a scalar field
® with mass m written in inertial coordinates

(x,v,z,1) 1S
20, 20, BP0 DD _rp_0 (1)
Ox? oy? Oz* o

Rewrite in generally covariant form:
nev,Vy® — m*® = 0 (2)
Equation (2) is derivable from an action
principle with
A@,n) = [ VOV, + m20?) [FTd*x  (3)

in which @ is varied but n,, is not (it is an
“absolute object”). No constraints, and
therefore no non-trivial gauge.



Upshot: It seems that in special relativistic
theories formal general covariance (passive
diffeo invariance) obtains but active diffeo
invariance as a gauge symmetry does not.

But think again! Sorkin’s (2002) move.
Replace the Minkowski metric n., in (2) by a
general Lorentzian metric g.» to get

gV, Vpy® — m*® = 0, (4)
and add the equation
Rabcd =0 (5)

where R .. is the Riemann tensor computed
from g, and V, is now the covariant
derivative operator determined by g.. The
solution sets for (2) and for (4)-(5) are the
same.



To apply the constraint approach we need an
action principle:

A(D, gop, 09 = (6)
%(gabVaCDVbCD + m?d? + QadeRabcd) —o d*x
g

where the Lagrange multiplier 84 is a tensor
field with the same symmetries as the
curvature tensor.

Variation with respect to 09<¢ gives (5).
Variation with respect to @ gives (4).

In addition, since the metric g, IS now a
dynamical object, it too must be varied, with
the result being an equation for #9* that says
two covariant derivatives acting on 64
equals the stress-energy tensor for @.



The constrained Hamiltonian version of
(4)-(6) has not been worked out, but it would
be very surprising if the first class constraints
did not generate phase space
transformations that correspond in a natural
way to the action of the spacetime
diffeomorphism group.

So has active diffeo invariance as a gauge
symmetry been trivialized?



